A taste of Red Queen: The Substrate Wars:
teleportation
“Red Queen”: Science Notes
[Appendix from Red Queen: The Substrate Wars.]
If you’re a theoretical physicist, you’ll note I am taking liberties with the science. But only a little—and the plot is very much real science. Steve Duong discovers something unexpected, creates a new hypothesis which explains his anomalous results, then confirms his hypothesis by further experimentation. I don’t personally believe we live in a universe where giant quasiparticles can talk to every other particle in the universe and ask them to attach to new partners, but it could be so. We are always just one experiment away from a revolution in understanding. And it will likely be something equally unexpected that allows us to travel to the stars.
I have the Grey Tribe communicating by using encrypted messages embedded in public web site photo streams. For a similar app available now, see Crypstagram. There are several messaging apps that are encrypted currently, for example Whatsapp. But in this future State of Emergency, standard encryption of messages and email has been outlawed, and phone companies and apps are not allowed to secure user data against surveillance. There are high officials in the US government at this writing asking that all phones be searchable for law enforcement purposes, and we can expect more efforts to outlaw encryption. “When encryption is outlawed, only outlaws will have encryption!”
On the attempts to find a cellular automaton model that explains quantum physics, this is the abstract of one interesting paper: “Quantum Field as a Quantum Cellular Automaton I: The Dirac free evolution in one dimension”:
It is shown how a quantum cellular automaton can describe very precisely the Dirac evolution, without requiring Lorentz covariance. The automaton is derived with the only assumptions of minimal dimension and parity and time-reversal invariance. The automaton extends the Dirac field theory to the Planck and ultrarelativistic scales. The Dirac equation is recovered in the usual particle physics scale of inertial mass and momenta. In this first paper the simplest case of one space dimension is analyzed. We provide a technique to derive an analytical approximation of the evolution of the automaton in terms of a momentum-dependent Schrödinger equation. Such approximation works very well in all regimes, including ultrarelativistic and Planckian, for the typical smooth quantum states of field theory with limited bandwidth in momentum. Finally we discuss some thought experiments for falsifying the existence of the automaton at the Planck scale.
Real quantum computing is still in its infancy. Efforts so far have been plagued by noise and the small number of qubits available—the current state of the art is 4! Researchers—and especially outside evaluations—find it hard to tell whether current quantum computers are actually doing quantum computation. This is an area where many discoveries are likely to clarify quantum phenomenon, and perhaps, as in this story, open up completely new vistas on how the universe is organized.
If you are already familiar with the basics of quantum phenomena and want to learn more about quantum computing, the Wikipedia articles on the field are excellent places to start.
Artificial Life is a kind of computational model of the biology of life as we know it. Starting with very simple worlds, models have become more and more sophisticated to the point where significant discoveries about emergent features are being made. Larger, faster simulations feature co-evolving organisms in ecosystems and environments that have been molded by biological processes. Wikipedia is a good place to start learning about the field.
The abstract of a current paper, “Indefinitely Scalable Computing = Artificial Life Engineering,” by David H. Ackley and Trent R. Smallon, on the state of research and ideas on applying ALife concepts to general computer architecture:
The traditional CPU/RAM computer architecture is increasingly unscalable, presenting a challenge for the industry—and is too fragile to be securable even at its current scale, presenting a challenge for society as well. This paper argues that new architectures and computational models, designed around software-based artificial life, can offer radical solutions to both problems. The challenge for the soft alife research community is to harness the dynamics of life and complexity in service of robust, scalable computations—and in many ways, we can keep doing what we are doing, if we use indefinitely scalable computational models to do so. This paper reviews the argument for robustness in scalability, delivers that challenge to the soft alife community, and summarizes recent progress in architecture and program design for indefinitely scalable computing via artificial life engineering.
The Red Queen hypothesis is one of the key concepts of modern evolutionary biology.
New Reviews: “Red Queen: The Substrate Wars”
The Kindle version is available on Amazon here, at only $2.99, while the trade paperback is available here at around $13.
The next two Amazon reviews:
I would share this reviewer’s concerns if the violations of standard conservation of mass and energy weren’t explained in two ways: explicitly, by Steve Duong (who shares the unease), and implicitly by the “world as simulation” thread of the story, which should leave the reader wondering if the story is taking place in a simulation itself. It’s pointed out that just such violations of physical laws would be expected on the margins of a less-than-perfect simulation, and there’s no reason to believe the physics-as-computation-on-substrate of what we think of reality is free of such flaws.
As for the normal pace of development of a technology, I’m asking the reader to believe Steve Duong is one of those rare geniuses who can do in a week what might take a team of scientists a year. While such people are rare, they do exist; and the story must move fast and so can’t stop to do more than hint at the long process of development in normal teams.
Reviews: “Red Queen: The Substrate Wars”
The Kindle version is available on Amazon here, at only $2.99, while the trade paperback is available here at around $14 — but use the sale code BOOKDEAL25 for 25% off (I assume until Dec. 25th.)
So far, it’s received two Amazon reviews:
4.0 out of 5 stars
Good read!
By M. Cunningham
Verified Purchase
This is a fast pace science fiction thriller which pits college students against the powers-that-be in a realistic near-future. The dialog and characters are well-developed, believable, and the author seems to capture the mind-set and vernacular of the intellectual college students who tend to rebel against the status-quo. Some of the story had me ‘on the edge of my seat’ so to speak wondering if the college rebels were going to succeed. The novel also gives one much to think about concerning government power, educational systems, capitalism, and the limits of social equality. I heard echoes of Robert Heinlein here (which made sense in reading the author’s end-notes ‘Quotes from the Golden Age of Science Fiction’.) The only disappointment for me was I now have to wait for book 2 to see how the conflict proceeds.
4.0 out of 5 stars
The story took a moment to get going, but …
By Benjamin Olsen
Verified Purchase
The story took a moment to get going, but became one the most engaging reads I’ve encountered in months. I’m looking forward to the rest of the series.